Two additional instantiations from the Tip5 hash
function construction

Robin Salen

Toposware, Inc., USA
research@toposware.com

February 2, 2023

Abstract. In this short note, we propose two additional instantiations based on
the design of the novel hash function Tip5 [SLST23] defined over the finite field F,
with p = 254 — 232 4 1, targeting 128 bits of security, and which parameterization
may be better suited for generic-purpose STARK-based projects over this finite field.
These instantiations, denoted Tip4 and Tip4’ respectively, from their digest size, offer
better performances both in native hashing, native digest compression, and in-circuit
performance. In particular, Tip4 allows for an even more efficient compression,
leveraging the Jive compression mode [BBC™22] to perform 4-to-1 digest compression
with only one internal permutation, and Tip4’ native cost is only about 12% slower
than SHA3-256, the shortest gap to date between algebraic-oriented and traditional
hash functions. We accompany these new instantiations with evaluation of their
performances and security analysis.

Keywords: Tip5 - Hash functions - Jive - Merkle tree - zk-STARK - AIR

1 Introduction

Algebraic-oriented (AO) hash functions have seen a rising interest over the past years, with
the emergence of various zero-knowledge protocols and projects built on them requiring
verifiable computation of such primitives, such as in proving knowledge of Merkle Tree
authentication paths. While traditional binary hash functions have been designed with
hardware considerations, AO hash functions are designed such that they maintain a low
multiplicative degree, allowing efficient execution within zero-knowledge protocols. This
design requirement however usually induces lower native performances, as opposed to
functions like SHA256 or blake2.

In the past few years, we have seen the rise of several AO hash function families, for in-
stance [AABST19, AGR'16, GKR'19, BBC*22] to name a few, providing generic designs
to obtain instances of hash functions over finite fields satisfying the low-multiplicative
degree efficiency requirement of zero-knowledge proving systems.

In parallel, there has been an increasing number of zero-knowledge protocol construc-
tions based on FRI [BSBHR17], which removes the need for an algebraic group, hence
allowing to use much smaller fields than it was previously possible. Among those fields,
the "small" Goldilocks prime field, defined by F,, with p = 264 — 232 + 1 and originally
discovered by the Polygon Zero team, enjoys really efficient modular reduction, thanks to
its particular shape. In addition, this field has a large two-adicity, making it suitable for
zero-knowledge protocols requiring the use of FFTs.

research@toposware.com

2 Two additional instantiations from the Tip5 hash function construction

Since its discovery, this field has been adopted in several projects, including [Mid23,
Zer23, GDHT22], and has been at the heart of several research topics, for instance in the
construction of STARK-friendly elliptic curves over extension fields [SSS22, Por22]. The
latter is aimed at being used within the Miden VM [Mid23].

Unlike generic constructions, some designers have opted for designs specific to some
finite fields: [GKL'21] defined a novel hash function with three instances, over two
commonly used fields (BN254 and BLS12-381 scalar fields), and over a specifically crafted
field tailored for their construction; [AKM™22] defined a variation of the Rescue-Prime
construction over the "small" Goldilocks field, and more recently, [SLST23] proposed a
new construction, inspired from the work of [AABS™19] and [GKL"21], also built on the
same small field.

Motivation The recent Tip5 construction from [SLST23] reduces the gap between tradi-
tional binary hash functions and AO ones. However, it is application-specific, in that:

o It targets a security level of 160 bits, as aimed to be used within the TritonVM
[SV21], while most applications only require 128 bits of security.

o Consequently, its digest size consists of 5 field elements (320 bits), while applications
on this field usually require only 4 elements. Having a larger digest size also increases
proof size of FRI-based proving systems.

o Its capacity size (6 field elements) is relatively large, reducing the efficiency of hashing
arbitrary sequences (only a capacity of 4 is necessary to achieve 128 bits security
level, allowing to dedicate a larger portion for the rate).

Our Contribution In this note, we present two variations of the hash function defined
in [SLST23], namely Tip4 and Tip4’, achieving 128 bits of security, and offering better
performances both in terms of native hashing, native digest compression, and in-circuit
computation. In particular, Tip4’ reduces the gap even further between existing algebraic-
oriented hash functions and their traditional counterpart.

2 Background

Let’s review in a nutshell the construction of Tip5 hash function designed in [SLST23].
Inspired by the SHARK design strategy of interleaving full S-Box layers with MDS layers,
and by the Reinforced Concrete design leveraging lookups, it defines a novel sponge
construction over F,, (p = 264 — 232 + 1). The specific instantiation has a state of 16 field
elements and a rate width of 10 elements. The entire parameterization of Tip5 is available
in table 1.

Its internal permutation f : F‘}fi — F}J(" consists of N = 5 rounds identically constituted
of three subroutines:

e an S-Box layer, operating on each state element independently. It operates a split-
and-lookup S-Box denoted S on the first four elements, and a power-map S-Box
denoted T on the remaining 12 elements.

o an MDS layer, consisting of a matrix-vector multiplication of the internal state by a
16 x 16 MDS matrix with coefficients specifically crafted for efficient product in the
frequency domain in time O(klog k). We refer to [AKM™*22] for a description on the
technique.

o an ARK (Additive Round Constants) layer, adding to each state element an inde-
pendently sampled constant in IFp.l

1The N rounds constituting the permutation f are identical, except for the round constants they insert.

Robin Salen 3

3 Alternative instantiations: Tip4 and Tip4’
We denote by Tip4 and Tip4’ our two variants of the original Tip5 construction, respec-
tively with state width 12 and 16. The complete sets of parameters defining these two

instantiations are listed in 1 along with the original Tip5 parameters.

Table 1: Summary of parameters

Parameter Tipd Tip4 Tip4’
field modulus 261 2371 [261 237+ 1 [269 — 237 11
number of rounds 5 5)
state size 16 16 12
sponge rate 10 12 8
sponce capacity 6 4 4
digest length) 4 4
power map exponent 7 7 7
number of split-and-lookups/round 4 4 4
number of power maps/round 12 12 8

The main difference from the original construction comes from the digest size and
sponge capacity, both reduced to 4 field elements, minimal required value to achieve 128
bits of security. In particular, compared to Tip5:

e Tip4 has a larger rate, allowing to hash more efficiently arbitrary input sequences.
In addition, it can perform 3-to-1 compression when instantiated in sponge mode, or
4-to-1 compression when using the Jive compression mode, at no extra cost. The
latter approach allows to divide by two the depth of Merkle trees (and hence number
of Tip4 permutations).

e Tip4’ has a smaller state, while still being able to perform 2-to-1 compression with
only one internal permutation call. In addition, its smaller MDS matrix allows for a

faster linear layer than the one in Tip5. It also enjoys fewer power maps per round
(8 instead of 12).

Similarly to Tip5, both instantiations apply the split-and-lookup S-Box S on the first
4 elements of the state (part of the rate portion).

3.1 Number of rounds

Although the number of rounds could be reduced when aiming at 128 bits security, based
on the analysis in section 5, out of caution, we keep the number of rounds at 5 for both
Tip4 and Tip4’, similarly to the original instance.

3.2 Round constants

Round constants for each new instantiation follows the original round construction genera-
tion defined in [SLST23], consisting in hashing with Blake3 the concatenation of byte i
(for round constant i) and the ASCII string "Tip4" or "Tip4™" respectively, followed by the
same hash output processing mentioned in [SLST23].

3.3 MDS matrix for Tip4’

Tip4 requires a different MDS matrix than in the original Tip5 construction, because
of its smaller state. Keeping efficiency in mind, we opt for a similar approach based
on selecting a circulant MDS matrix, which coefficients in the frequency domain are

4 Two additional instantiations from the Tip5 hash function construction

scaled powers of two, for efficient matrix-vector multiplication in O(klogk) leveraging
FFTs. For this, we choose the same MDS matrix as the 128-bit security instantiation of
Rescue-Prime Optimized defined in [AKM™'22], i.e. the circulant matrix which first row is
[7,23,8,26,13,10,9,7,6,22,21,8].

3.4 Use of Jive mode for compression

The Jive mode, introduced in [BBCT22], allows to ignore the sponge construction when
compressing digests. In addition, at no extra cost, it can perform k-to-1 compression, for
k > 2 with still only one internal permutation call. Its construction is detailed in 1.

x Y — g L1 --- Tp—1
. | |
P
PO(x>y) Pl(x7y)
L] x%/
i =
Jivea(x,y) Jivep (20, ...y Tp—1)
(a) Jives, which maps (F7*)? to Fy". (b) Jivey, which maps (F3")® to Fy".

Figure 1: The Jive compression mode

In the case of Tip4, using Jive to achieve 4-to-1 compression triples the size of the
siblings provided in Merkle tree authentication paths, while halving the depth of those
trees, for an overall increase of 50% in authentication path size (major part of FRI-based
proofs). This overhead can nevertheless be amortized with several techniques, such as
performing recursive proof composition, leveraging Merkle tree inclusion proofs batching,
etc.

We note that Tip4’ can also benefit from the Jive compression mode, if one wanted to
perform 3-to-1 digest compression with only one Tip4’ permutation. This approach has
been done for instance in [LPPT22]. Although it is possible, FRI-based proving systems
usually rely on radix-2 FFTs and 2-to-1 compression functions in Merkle trees (possibly
extending them to 2k-ary Merkle trees with a 2k-to-1 compression functions). To this end,
it makes the use of 3-to-1 compression less trivial as it would involve several modifications
in core components of most proving systems based on FRI.

3.5 Arithmetization

The arithmetization of Tip4 and Tip4’ is similar to what is described in [SLST23]. Lever-
aging similar techniques for efficient lookups across tables, we end up with an identical
number of regular and extension columns for Tip4, respectively 59 and 21. Tip4’ on the
other end has 4 fewer regular columns, and the same number of extension columns.

In Merkle trees, arithmetizing the compression using Jive does not yield any overhead,
as one can include the final Jive chunk summation when inserting the nodes of the upper
layer, without impacting the overall constraint degree.

4 Performances

We highlight below the native performances of hashing and digest compression of our
two variants and compare them with the original Tip5 construction. All instances have

Robin Salen 5

been implemented within the winterfell Rust library, a FRI-based STARK proving system
implementation, available at [Fac23].

Table 2: Time for compressing digests

Tiph (2-to-1)

Tipd (2-to-1)

Tipd (4-to-1)

Tipd” (2-to-1)

1.17 ps 1.16 ps 1.12 ps 397 ns
Table 3: Time for hashing r elements
Tip5 (r = 10) || Tip4 (r =12) | Tip4’ (r = 8)
1.09 ps 1.07 ps 442 ns

The larger T ratio in the case of Tip4 and Tip4’ allows for greater hash throughput,

illustrated in 4.

Table 4: Hash throughput per second
Tipd Tip4 Tip4’
9.17M hashes || 11.2M hashes | 18.1M hashes

In particular, Tip4’ is getting particularly close to SHA3-256, compressing two digests
being only about 12% slower than the Winterfell SHA3-256 implementation.

4.1 In-circuit performance

While we do not directly provide prover performance estimates in this note, we still
highlight the in-circuit efficiency gain brought up by those two new instances:

e Tip4: Tip4 AIR execution trace has the same dimension than the original Tip5
construction. However, leveraging the Jive compression mode allows to halve the
number of internal permutations when verifying authentication paths (the major
component of FRI-based proof verification). This in turns shortens the execution
trace length, effectively reducing the cost of computing FFTs to evaluate the trace
polynomials over the LDE domain.

e Tip4’: Tip4’ AIR execution trace is only slightly narrower than Tip5, however it
removes the need for 4 columns of degree 7 (the highest constraint degree of the
permutation).

5 Security arguments

Most of the arguments that follow are derived from section 5 of [SLST23]. We refer to
that section for extended discussion on how the mentioned attacks work.

e Regarding differential attacks, the MDS matrix remains unchanged with Tip4,
yielding an identical probability of differential caracteristic across two rounds of

(a o 1)m+125

— 27552'
p
For Tip4’, the MDS matrix has branching factor m + 1 = 9, activating fewer power
maps per round as we still have 4 split-and-lookup maps per round. This yield
a higher probability of successful differential attacks over two rounds, at 27307,
although still low enough to achieve 128 bits security.

6 Two additional instantiations from the Tip5 hash function construction

o As for Grobner basis attacks, assuming like in the original construction that the

p—1
m(N+1)—c—d

obtain a kernel vector in time O(M?). For N = 1, this gives us about 22913 operations
for Tip4, 2'9%9 operations for Tip4’ respectively.

obtained square Macaulay matrix of size M = (()) is dense, we can

e Leveraging linear approximations of the split-and-lookup map to perform Grébner
basis attacks doesn’t yield any advantage compared to the original construction, as
the number of fixed points of the split-and-lookup map over one round is identical,

240 (N-2)s
i.e. 240 points, yielding a probability of () ~ 2797 when excluding the
p
first and last round.

e Finally, fixing input and output entries of the split-and-lookup map to perform
Grobner basis attacks is also non-sufficient, as it yields a random system of equation
having solutions with probability p"~?~~¢, being approximately p~'2 ~ 27768 for
Tip4 and p~16 =~ 271024 for Tip4’ respectively.

6 Conclusion

In this short note, we have highlighted two new instances derived from the new Tip5 hash
function construction, designed for FRI-based proving systems over the prime field of
characteristic p = 264 —232+1 and targeting 128 bits security level. These two instantiations
offer faster hashing, faster compression, and better performances within proving systems
than the original construction, with one of them almost closing the performance gap
between AO and traditional hash functions.

References

[AABST19] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan
Szepieniec. Design of symmetric-key primitives for advanced cryptographic
protocols. Cryptology ePrint Archive, Paper 2019/426, 2019. https://
eprint.iacr.org/2019/426.

[AGRT16] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. Mimc: Efficient encryption and cryptographic hashing with minimal
multiplicative complexity. Cryptology ePrint Archive, Paper 2016/492, 2016.
https://eprint.iacr.org/2016/492.

[AKM™22] Tomer Ashur, Al Kindi, Willi Meier, Alan Szepieniec, and Bobbin Threadbare.
Rescue-prime optimized. Cryptology ePrint Archive, Paper 2022/1577, 2022.
https://eprint.iacr.org/2022/1577.

[BBC*22] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen,
Vesselin Velichkov, and Danny Willems. New design techniques for ef-
ficient arithmetization-oriented hash functions:anemoi permutations and
jive compression mode. Cryptology ePrint Archive, Paper 2022/840, 2022.
https://eprint.iacr.org/2022/840.

[BSBHR17] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast
reed-solomon interactive oracle proofs of proximity. FElectron. Colloquium
Comput. Complex., TR17, 2017.

[Fac23] Facebook. Winterfell. Repository (fork) https://github.com/Nashtare/
winterfell/tree/tip4, January 2023.

https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2016/492
https://eprint.iacr.org/2022/1577
https://eprint.iacr.org/2022/840
https://github.com/Nashtare/winterfell/tree/tip4
https://github.com/Nashtare/winterfell/tree/tip4

Robin Salen 7

GDH™'22] Théo Gauthier, Sébastien Dan, Monir Hadji, Antonella Del Pozzo, and Yack-
J
olley Amoussou-Guenou. Topos: A secure, trustless, and decentralized inter-
operability protocol, 2022.

[GKL*21] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Liiftenegger, Christian Rech-
berger, Markus Schofnegger, and Roman Walch. Reinforced concrete: A fast
hash function for verifiable computation. Cryptology ePrint Archive, Paper
2021/1038, 2021. https://eprint.iacr.org/2021/1038.

[GKR'19] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge
proof systems. Cryptology ePrint Archive, Paper 2019/458, 2019. https:
//eprint.iacr.org/2019/458.

[LPP*22] Jianwei Liu, Harshad Patil, Akhil Sai Peddireddy, Kevin Singh, Haifeng Sun,
Huachuang Sun, and Weikeng Chen. An efficient verifiable state for zk-evm
and beyond from the anemoi hash function. Cryptology ePrint Archive, Paper
2022/1487, 2022. https://eprint.iacr.org/2022/1487.

[Mid23] Polygon Miden. Miden VM. Repository https://github.com/
maticnetwork/miden, January 2023.

[Por22] Thomas Pornin. Ecgfpb: a specialized elliptic curve. Cryptology ePrint
Archive, Paper 2022/274, 2022. https://eprint.iacr.org/2022/274.

[SLST23] Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, and Bobbin
Threadbare. The tip5 hash function for recursive starks. Cryptology ePrint
Archive, Paper 2023/107, 2023. https://eprint.iacr.org/2023/107.

[SSS22] Robin Salen, Vijaykumar Singh, and Vladimir Soukharev. Security analysis
of elliptic curves over sextic extension of small prime fields. Cryptology ePrint
Archive, Paper 2022/277, 2022. https://eprint.iacr.org/2022/277.

[SV21] Alan Szepieniec and Thorkil Veerge. Neptune whitepaper. Whitepaper https:
//neptune.cash/whitepaper/, April 2021.

[Zer23] Polygon Zero. Plonky2. Repository https://github.com/mir-protocol/
plonky2, January 2023.

https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2022/1487
https://github.com/maticnetwork/miden
https://github.com/maticnetwork/miden
https://eprint.iacr.org/2022/274
https://eprint.iacr.org/2023/107
https://eprint.iacr.org/2022/277
https://neptune.cash/whitepaper/
https://neptune.cash/whitepaper/
https://github.com/mir-protocol/plonky2
https://github.com/mir-protocol/plonky2

	Introduction
	Background
	Alternative instantiations: Tip4 and Tip4'
	Number of rounds
	Round constants
	MDS matrix for Tip4'
	Use of Jive mode for compression
	Arithmetization

	Performances
	In-circuit performance

	Security arguments
	Conclusion

